
26/11/2013

1

FSO – November 25, 2013

Mounting file systems.
Allocating disk blocks to files.
Block caching.

Bibliography: OSTEP book
•  Chap 38: section 15
•  Chap 39: sections 3 and 7

Main questions about file systems

•  How users name files
– Name space organized as a tree; directories

convert symbolic names
–  Integrating more than one disk in a single file

system
•  How files and directories are suported

–  Internal names are indexes in the i-node table
stored in the disk

– How to support directories
– How to allocate disk blocks to files
– How to accelerate read and write operations

26/11/2013

2

File system organization

User	
 processes	

Opera+ng	

system	
 code	

Hardware	

Disks	

Logical	
 block	
 number	

Conver,ng	
 file	
 offsets	
 in	
 block	
 numbers	

Open	
 file	
 table	
 (one	
 per	
 process)	

Directory	
 management	

&	
 name	
 conversion	

Channel	
 numbers	
 Symbolic	
 name	
 	

Ac,ve	
 i-­‐node	
 entries	

Symbolic file system [1]

•  Organized as a tree
•  Files have absolute and relative names

Current
directory

Absolut name:/spell/mail/prt/first
Relative name: first

26/11/2013

3

Symbolic file system [2]

•  Directories are stored in the disk as ordinary
files (and have an index in the i-node table)

•  Used to convert names into indexes in the i-
node table

Type Name I-node
F x.c 1209
D progs 133
D music 14551

Symbolic file system [3]

•  Volume or logic disk: corresponds to a physical
disk or to a part of it (partition)

•  “Raw disk”: physically formatted (surfaces,
tracks, sectors) but not logically. To be used
one needs to put there management
information (meta-data): format (windows),
mkfs (unix/linux)

•  Naming: A:, ... Windows; /dev/hda1, ... Linux
•  How users view several logical disks ?

26/11/2013

4

A tree for each logical disk

File

Directory

File System Mounting or
a single tree

•  There is a main file system (root file system)

•  A file system (FS) must be mounted before
becoming accessible.

•  A non-mounted FS is placed (mounted) in a
mount point.

26/11/2013

5

Root FS /dev/hda1

Unmounted logical
disk with a valid file
system inside

raiz raiz

d1 d2
d5 d6

d3 d4
d7 d8

/dev/hda1 /dev/hda2

File

Directory

After mount /dev/hda2 /d2/d4
raiz

d1 d2

d3 d4

d5 d6

d7 d8

File

Directory

26/11/2013

6

Implementing a file system
•  How to support in the disk files and

directories
•  How to allocate blocks to files
•  How to speed up file access

File System Implementation

A possible
file system

layout

Block 0
Block 1
Block 2

Block
SIZE-1

Super Block

Block bit map

I-node bit map

I-node table

Blocks containing
ordinary files and
directories

Root directory

Data

Meta-data

26/11/2013

7

Supporting Files

(a) Contiguous allocation of disk space for 7 files
(b) State of the disk after files D and E have been

removed
As we will see later, it is not mandatory to allocate

blocks sequentially.

(a)

(b)

Directory Implementation

•  Stored in a file
•  Table of file names with

corresponding i-node number
•  Linear search time
•  Could keep ordered

alphabetically via linked list or
use B+ tree

•  How to handle large and small
names ?

Symbolic name Information associated:
most important is index in i-node table

Directory
Name Information

26/11/2013

8

Name length
•  Fixed-size entries

–  Inflexible
–  Works if name size is limited, or
–  Large space allocated, that in most cases is wasted

•  Variable-size entries
–  More flexible
–  Harder to manipulate
–  A possible solution

Next
Entry

Name
Size Name I-node Next

Entry
Name
Size Name I-node Next

Entry
Name
Size Name Free space

Entry 1 Entry 2 Entry 3

Allocating blocks to files

•  File sizes
– Are most files small or large?

•  SMALL

– Which accounts for more total storage: small
or large files?

•  LARGE

26/11/2013

9

File System Workload

•  File access
– Are most accesses to small or large files?

•  SMALL

– Which accounts for more total I/O bytes: small
or large files?

•  LARGE

File System Workload

•  How are files used?
– Most files are read/written sequentially
– Some files are read/written randomly

•  Ex: database files, swap files
– Some files have a pre-defined size at creation
– Some files start small and grow over time

•  Ex: program stdout, system logs

26/11/2013

10

File System Design
•  For small files:

– Small blocks for storage efficiency
– Files used together should be stored together

•  For large files:
– Storage efficient (large blocks)
– Contiguous allocation for sequential access
– Efficient lookup for random access

•  May not know at file creation
– Whether file will become small or large
– Whether file is persistent or temporary
– Whether file will be used sequentially or randomly

Allocation Methods
•  An allocation method refers to how disk

blocks are allocated for files

•  3 main methods
–  Contiguous allocation
–  Linked allocation
–  Indexed allocation

26/11/2013

11

Contiguous Allocation
Contiguous allocation – each file occupies

set of contiguous blocks
–  Best performance in most cases
–  Simple – only starting location (block #) and

length (number of blocks) are required
–  Problems include finding space for file,

knowing file size, external fragmentation, need
for compaction off-line (downtime) or on-
line

Contiguous Allocation

•  Mapping from logical to physical:
in which block is the byte with offset L ?

L / BlockSize"

Q"

R"

Block to be accessed = Q + first block"
Displacement into block = R"

Directory

File size
First block

I-node Contiguous blocks with file contents

26/11/2013

12

Linked Allocation

•  Each file a linked list of blocks
–  File ends at null pointer
–  No external fragmentation
–  Each block contains pointer to next block
–  No compaction, external fragmentation

Directory

File size
First block

I-node

File contents is in linked list of blocks

Linked Allocation
Directory

File size
First block

I-node

File contents is in linked list of blocks

•  Mapping from logical to physical:
in which block is the byte with offset L ?

L / (BlockSize – sizePointerNextBlock)"
Q"

R"

Block to be accessed is in Qth position in the list"
Displacement into block = R"

26/11/2013

13

Linked Allocation with list in RAM
Directory

File size
First block: 1

I-node Disk Blocks

4

8

-1

Array in RAM where entry
i corresponds to block i in the
disk.
If a file occupies blocks 1, 4
and 8:
•  I-node would point to 1
•  Entry 1 would contain 4
•  Entry 4 would contain 8
•  Entry 8 would contain -1
indicating the end of the list

0
1
2
3
4
5
6
7
8

File-Allocation Table (Windows FAT)

26/11/2013

14

Allocation Methods - Indexed
•  Indexed allocation

–  Each file has its own index block(s) of
pointers to its data blocks

 Directory

File size

I-node

Disk Blocks

Address 0

Address 1

Address 2

Address N-1

N addresses
of blocks

Indexed Allocation (Cont.)
•  Need index table

•  Direct access (lseek) is easy

•  Without external fragmentation, but have
overhead of index block

Q = displacement into index table"
R = displacement into block"

Mapping from logical to physical: in
which block is the byte with offset L ?

L / BlockSize"

Q"

R"

26/11/2013

15

Indexed Allocation (Cont.)
•  One of the addresses can point to a block

with addresses (1-level indirect)
–  1 block can contain BlockSize/AddressSize addresses. For example with

blocks of 4096 bytes and addresses of 4 bytes, one can have 1024
addresses

•  More levels of indirection are possible
(see the following example of UNIX)

•  Good compromise
–  Small files use only direct addresses
–  It is possible to support very large files (see the following example)

Unix/Linux: 3 levels of indirection

Using this approach file size is bigger than 2^32; one needs more than 32-bit for the file offset

Maximum size of file = blockSize*(10 + 1024 + 1024*1024 + 1024*1024*1024)

26/11/2013

16

Performance
•  Best method depends on file access type

–  Contiguous great for sequential and random
•  Linked good for sequential, not random
•  Indexed more complex

–  Single block access could require 2 index block
reads then data block read

Efficiency and Performance
•  Efficiency dependent on:

–  Disk allocation and directory algorithms
•  For each file, keeping data and meta-data as close as

possible
–  Types of data kept in file’s directory entry
–  Pre-allocation or as-needed allocation of

metadata structures
–  Fixed-size or varying-size data structures

26/11/2013

17

Efficiency and Performance (Cont.)
Buffer cache – separate section of main memory for

frequently used blocks
–  read-ahead – techniques to optimize sequential access
–  Delayed write – writing to the buffer cache; eventually

data changed in RAM will arrive to disk. The flush of data
to the disk happens:

•  When the file is closed
•  When the user calls fsync()
•  Every 5-10 seconds by a system daemon; this value is just

indicative

Block cache (cont)
•  Delayed write advantages

When writing in a block, there is a high probability of writing again in the
same block shortly. Instead of writing in the disk, the system updates
a copy of the block in RAM; the subsequent writes will also be made
in RAM. If there N changes to the same block one will have to write
to the disk only one time instead of N

•  Delayed write disadvantages
When changes are only in RAM the file system can be incoherent, i.e.

part of the changes are already in the disk, others aren´t. This
incoherence must not exist for long

