FSO — November 25, 2013

Mounting file systems.
Allocating disk blocks to files.
Block caching.

Bibliography: OSTEP book
» Chap 38: section 15
» Chap 39: sections 3 and 7

Main questions about file systems

» How users name files

— Name space organized as a tree; directories
convert symbolic names

— Integrating more than one disk in a single file
system
» How files and directories are suported

— Internal names are indexes in the i-node table
stored in the disk

— How to support directories
— How to allocate disk blocks to files
— How to accelerate read and write operations

26/11/2013

File system organization

User processes Symbolic name Channel numbers

Directory management
& name conversion

Operating
system code

Open file table (one per process)

Active i-node entries

’ Converting file offsets in block numbers ‘

Logical block number

Hardware

Symbolic file system
» Organized as a tree
 Files have absolute and relative names
root [spell | bin

I stat I ma:l[dist | | find Ioounl hex Inaorderl I P I e I mail I

Current (5 \béééé/

directory

‘Imlc%mglgg Iz ll

| list I obj Ispell” all “ last I first |

Absolut name:/spell/mail/prt/first
Relative name: first

26/11/2013

Symbolic file system

 Directories are stored in the disk as ordinary
files (and have an index in the i-node table)

* Used to convert names into indexes in the i-

node table
Type |Name I-node
F |xc 1209
D progs 133
D music 14551

Symbolic file system

Volume or logic disk: corresponds to a physical

disk or to a part of it (partition)

“‘Raw disk”: physically formatted (surfaces,

tracks, sectors) but not logically. To be used

one needs to put there management
information (meta-data): format (windows),

mkfs (unix/linux)

Naming: A:, ... Windows; /dev/hda1, ... Linux

How users view several logical disks ?

26/11/2013

A tree for each logical disk

C: A: D:

d\?bﬁ%%
NPy 4

[] Directory

File System Mounting or
a single tree

* There is a main file system (root file system)

* A file system (FS) must be mounted before
becoming accessible.

« A non-mounted FS is placed (mounted) in a
mount point.

26/11/2013

Root FS /dev/hda1

/dev/hda1 Idev/hda2
raiz

d1 d2
[d4 |

[d3 |

5

_ Unmounted logical
O Fie disk with a valid file
[Directory system inside

After mount /dev/hdaZ2 /d2/d4

raiz

O File

[1 Directory

26/11/2013

Implementing a file system

» How to support in the disk files and
directories

» How to allocate blocks to files
* How to speed up file access

File System Implementation

Block 0 «— Super Block
. Block 1 .
A pOSS|b|e Block 2 } Block bit map
file System “— I-node bit map

IayOUt I-node table
} Root directory
_ Meta-data
[] Data 1 ! Blocks containing
ordinary files and
directories

Block
SIZE-1

26/11/2013

Supporting Files

File A File C File E File G
(4 blocks) (6 blocks) (12 blocks) (3 blocks)
(HEEEEENEEEEEESNNENEEEEEEEEEEEEEEEENEEEEE (a)
- - -
File B File D File F
(3 blocks) (5 blocks) (6 blocks)
(a)
(File A) (File C) (File E) (File G)
— — —
(IS EEEEEEEEEEEEEEEEEEEEEEEEEEEEM (b)
File B 5 Free blocks 6 Free blocks

(b)
(a) Contiguous allocation of disk space for 7 files

(b) State of the disk after files D and E have been
removed

As we will see later, it is not mandatory to allocate
blocks sequentially.

Directory Implementation

Information associated:

SymbOllc name most important is index in i-node table

Stored in a file

Table of file names with
corresponding i-node number D'rectory.
« Linear search time Name _Information

* Could keep ordered

alphabetically via linked list or

use B+ tree

How to handle large and small
names ?

26/11/2013

Name length

* Fixed-size entries
— Inflexible
— Works if name size is limited, or

— Large space allocated, that in most cases is wasted

» Variable-size entries
— More flexible
— Harder to manipulate
— A possible solution

|| | |
I’E\l:t)::/ Nsai;nee Name I-node é\lnet:,(; Nse?rz’r:%e Name I-node| Free space Iglnet)r()t/ Nsai?ee Name
Entry 1 Entry 2 Entry 3
Allocating blocks to files
* File sizes
— Are most files small or large?
« SMALL

— Which accounts for more total storage: small

or large files?
* LARGE

26/11/2013

File System Workload

 File access
— Are most accesses to small or large files?
+ SMALL
— Which accounts for more total I/O bytes: small
or large files?
* LARGE

File System Workload

» How are files used?
— Most files are read/written sequentially
— Some files are read/written randomly
» Ex: database files, swap files
— Some files have a pre-defined size at creation
— Some files start small and grow over time
* Ex: program stdout, system logs

26/11/2013

File System Design

* For small files:

— Small blocks for storage efficiency

— Files used together should be stored together
 For large files:

— Storage efficient (large blocks)

— Contiguous allocation for sequential access

— Efficient lookup for random access
» May not know at file creation

— Whether file will become small or large

— Whether file is persistent or temporary

— Whether file will be used sequentially or randomly

Allocation Methods

An allocation method refers to how disk
blocks are allocated for files

3 main methods

— Contiguous allocation
— Linked allocation

— Indexed allocation

26/11/2013

10

Contiguous Allocation

Contiguous allocation — each file occupies
set of contiguous blocks
— Best performance in most cases
— Simple — only starting location (block #) and
length (number of blocks) are required

— Problems include finding space for file,
knowing file size, external fragmentation, need
for compaction off-line (downtime) or on-
line

Contiguous Allocation

Contiguous blocks with file contents
I-node

Filesize/HII\IIIII\

— First block 1

Directory

Q

—~
» Mapping from logical to physical: '8z
in which block is the byte with offset L ? R

Block to be accessed = Q + first block
Displacement into block = R

26/11/2013

11

Linked Allocation

« Each file a linked list of blocks
— File ends at null pointer
— No external fragmentation
— Each block contains pointer to next block
— No compaction, external fragmentation

Directory I-node
File size
— First block
File contents is in linked list of blocks
Linked Allocation
Directory I-node

File size
— First block.1

File contents is in linked list of blocks

» Mapping from logical to physical:
in which block is the byte with offset L ?

Q
L / (BlockSize — sizePointerNextBlock)

IS
R

Block to be accessed is in Qth position in the list
Displacement into block = R

26/11/2013

12

Linked Allocation with list in RAM

Directory

Array in RAM where entry
i corresponds to block i in the

disk.

I-node

File size
First block: 1

N

If a file occupies blocks 1, 4 >/8

and 8:

* I-node would point to 1
* Entry 1 would contain 4
* Entry 4 would contain 8

« Entry 8 would contain -1 ~ -1
indicating the end of the list

| [L1

Disk Blocks

File-Allocation Table (Windows FAT)

directory entry

[test

]

name

[217
start block
0
217 618
339
618 339
no. of disk blocks —1
FAT

26/11/2013

13

Allocation Methods - Indexed

* Indexed allocation

— Each file has its own index block(s) of
pointers to its data blocks -

Disk Blocks
Directory L
— I-node
File size]
Address 0 L
N addresses AddieseRNS |
of blocks Address 2 —
Address N-1 —

Indexed Allocation (Cont.)

* Need index table
» Direct access (Iseek) is easy

» Without external fragmentation, but have
overhead of index block

Mapping from logical to physical: in
which block is the byte with offset L ?
Q

-
L / BlockSize
\ Q = displacement into index table
R R = displacement into block

26/11/2013

14

Indexed Allocation (Cont.)

* One of the addresses can point to a block
with addresses (1-level indirect)

— 1 block can contain BlockSize/AddressSize addresses. For example with
blocks of 4096 bytes and addresses of 4 bytes, one can have 1024

addresses

* More levels of indirection are possible
(see the following example of UNIX)

» Good compromise

— Small files use only direct addresses
— ltis possible to support very large files (see the following example)

Unix/Linux; 3 levels of indirection

mode
owners (2)
timestamps (3)
:
size block count
direct blocks 7 .
:
— #—{ data | =
single indirect ——»E :
double indirect =—{data] |—: > 2 —»{ data |
triple indirect |_° =?
[=—{ data |

Maximum size of file = blockSize*(10 + 1024 + 1024*1024 + 1024*1024*1024)

Using this approach file size is bigger than 2~32; one needs more than 32-bit for the file offset

26/11/2013

15

26/11/2013

Performance
« Best method depends on file access type
— Contiguous great for sequential and random
» Linked good for sequential, not random
* Indexed more complex

— Single block access could require 2 index block
reads then data block read

Efficiency and Performance

» Efficiency dependent on:

— Disk allocation and directory algorithms

* For each file, keeping data and meta-data as close as
possible

— Types of data kept in file’ s directory entry

— Pre-allocation or as-needed allocation of
metadata structures

— Fixed-size or varying-size data structures

16

Efficiency and Performance (Cont.)

Buffer cache — separate section of main memory for
frequently used blocks

— read-ahead — techniques to optimize sequential access

— Delayed write — writing to the buffer cache; eventually
data changed in RAM will arrive to disk. The flush of data
to the disk happens:

* When the file is closed
* When the user calls fsync()

» Every 5-10 seconds by a system daemon; this value is just
indicative

Block cache (cont)

» Delayed write advantages

When writing in a block, there is a high probability of writing again in the
same block shortly. Instead of writing in the disk, the system updates
a copy of the block in RAM; the subsequent writes will also be made
in RAM. If there N changes to the same block one will have to write
to the disk only one time instead of N

« Delayed write disadvantages

When changes are only in RAM the file system can be incoherent, i.e.
part of the changes are already in the disk, others aren’t. This
incoherence must not exist for long

26/11/2013

17

